墨坛书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1.康托尔的连续统基数问题

(根据康托尔的定义)若两个集合——即两个由普通实数或点构成的集合——能建立起一种对应关系,使得其中一个集合的每个元素,都能对应到另一个集合中唯一确定的元素,那么这两个集合就被称为“等价”或“具有相同基数”。

康托尔对这类点集的研究,引出了一个看似非常合理的定理,但尽管人们付出了极大努力,至今仍无人能证明它。这个定理是:

任何由无穷多个实数构成的集合(即任何数集或点集),要么与自然数集(1, 2, 3, …)等价,要么与全体实数集(即连续统,也就是一条直线上的所有点)等价。因此,从等价性角度来看,数集只存在两种类型:可数集与连续统。

由这个定理可直接推出:连续统的基数是可数集基数之后的下一个基数。因此,证明该定理能在可数集与连续统之间搭建一座新的桥梁。

我还想提一下康托尔的另一个极具意义的论断——它与上述定理联系极为紧密,或许还能为定理的证明提供关键思路。若一个实数集满足“对集中任意两个数,都能确定谁是‘前一个’、谁是‘后一个’,且若a在b之前、b在c之前,则a一定在c之前”,那么这个集合就被称为“有序集”。一个集合的“自然排序”指的是“小数在前、大数在后”的排序方式,但显而易见,集合的排序方式还有无穷多种。

若我们给定一个集合的某种排序,并从中选出一个子集(即部分元素构成的集合),这个子集也会是有序的。康托尔重点研究了一种特殊的有序集,他称之为“良序集”——其特征是:不仅集合本身有第一个元素,它的每个子集也都有第一个元素。

自然数集(1, 2, 3, …)按自然排序显然是良序集;但全体实数集(即按自然排序的连续统)显然不是良序集——比如,若我们取“一条线段上除去起点后的所有点”作为子集,这个子集就没有第一个元素。

由此引出一个问题:能否用另一种方式对全体实数进行排序,使得它的每个子集都有第一个元素?也就是说,连续统能否被视为良序集?康托尔认为答案应当是肯定的。在我看来,若能直接证明康托尔这一非凡论断(比如,实际给出一种排序方式,使得该排序下的每个子集都能找到第一个元素),将是极为理想的结果。

2. 算术公理的相容性

当我们研究某门学科的基础时,必须建立一套公理体系——它需精确且完整地描述该学科“基本概念”之间的关系。这套公理同时也是对这些基本概念的定义:在我们所研究的学科范围内,任何命题若不能通过有限步逻辑推理从公理推导得出,就不能被认定为正确。

深入思考后会发现一个问题:公理集中的各个公理之间是否存在依赖关系?是否存在某些公理包含共同的“成分”?若想得到一套“公理彼此完全独立”的体系,就必须把这些共同成分分离出来。

不过,在与公理相关的众多问题中,我认为最重要的是:证明公理之间不存在矛盾,即基于公理的有限步逻辑推理,永远不会推出相互矛盾的结论。

在几何学中,公理相容性的证明可通过“构造一个合适的数域”来实现——让这个数域中数的关系,与几何学公理形成对应。这样一来,若从几何公理推出矛盾,在该数域的算术中也必然能发现矛盾。通过这种方式,几何公理的相容性证明,就转化为了算术公理的相容性证明。

另一方面,证明算术公理的相容性需要一种直接方法。算术公理本质上就是已知的运算规则,再加上连续性公理。我最近整理过这些公理[4],整理时将连续性公理替换为两个更简单的公理:一个是着名的阿基米德公理,另一个新公理的核心内容大致是:在其他所有公理都成立的前提下,数构成的体系是“无法再进一步扩展”的(即完备性公理)。

我确信,通过仔细研究并适当改造无理数理论中已知的推理方法,一定能找到证明算术公理相容性的直接途径。

从另一个角度说明这个问题的重要性:若给一个概念赋予了相互矛盾的属性,我认为从数学意义上说,这个概念“不存在”。比如,“平方等于-1的实数”在数学中就不存在。但如果能证明,通过有限步逻辑推理,永远不会从赋予概念的属性中推出矛盾,那我就认为这个概念(比如满足特定条件的数或函数)的“数学存在性”得到了证明。

就我们目前讨论的算术实数公理而言,证明公理的相容性,同时也是证明“完整实数系”或“连续统”的数学存在性。事实上,当公理相容性的证明完全完成后,那些偶尔出现的、对“完整实数系是否存在”的质疑,将变得毫无根据。

从上述角度来看,全体实数(即连续统)并非“所有可能的十进制小数序列”,也不是“所有可能的基本序列元素生成规则”的集合,而是一个“事物体系”——体系内事物的相互关系由设定的公理支配,且所有能通过有限步逻辑推理从公理导出的命题(也只有这些命题)在体系内为真。在我看来,只有这样定义,连续统的概念才具有严格的逻辑合理性;而且这似乎也最符合经验与直觉给我们的启示。

如此一来,连续统的概念,甚至“所有函数构成的体系”的概念,其存在性与“整数系”“有理数系”,或是康托尔提出的“高阶数系”“基数系”的存在性,在本质上是相同的。因为我确信,后者的存在性(和连续统的存在性一样)都能按上述方式证明;但“所有基数构成的体系”或“康托尔所有阿列夫数构成的体系”则不同——可以证明,无法为它们建立一套我所定义的“相容公理体系”,因此按我的术语,这类体系在数学中是“不存在”的。

从几何基础领域,我想提出以下问题:

[4] 参见《德国数学家协会年度报告》第8卷(1900年),第180页。

3. 等底等高的两个四面体体积相等问题

高斯在给格尔林的两封信中[5],曾对“立体几何的某些定理依赖于穷竭法(按现代术语,即依赖于连续性公理或阿基米德公理)”表示遗憾。高斯特别提到了欧几里得的一个定理:等高的三角锥(四面体)的体积比等于它们的底面积比。

目前,平面几何中类似的问题已得到解决[6]。格尔林也成功证明了“对称多面体体积相等”——他的方法是将对称多面体分割成全等的部分。但在我看来,要为上述欧几里得定理找到这样的“分割全等部分”的一般证明,很可能是不可能的;而我们的任务,就是给出“这种证明不可能”的严格论证。

要实现这一点,只需找到两个“等底等高的四面体”:它们既不能被分割成彼此全等的四面体,也不能通过“与全等四面体组合”形成两个可分割成全等四面体的多面体[7]。找到这样的两个四面体,就能证明“用分割法证明欧几里得定理”是不可能的。

[5] 参见《高斯全集》第8卷,第241页与第244页。

[6] 除早期文献外,可参见希尔伯特《几何基础》(莱比锡,1899年)第4章【汤森德英译本,芝加哥,1902年】。

[7] 本文撰写后,德恩先生(herr dehn)已成功证明了这种不可能性。参见他的短评《论等体积多面体》(Ueber raumgleiche polyeder),发表于《哥廷根皇家科学会通报》(Nachrichten d. K. Gesellsch. d. wiss. zu G?ttingen)1900年刊,以及一篇即将发表于《数学年刊》的论文【第55卷,第405-478页】。

4. 直线作为两点间最短距离问题

另一类与几何基础相关的问题如下:我们知道,若从构建普通欧几里得几何所需的公理中剔除平行公理(或假设平行公理不成立),同时保留其他所有公理,就能得到罗巴切夫斯基几何(双曲几何)。因此,我们可将其视为“与欧几里得几何相邻的几何”。

若进一步要求“直线上三点中‘仅有一点在另外两点之间’”这一公理不成立,就能得到黎曼几何(椭圆几何)——由此可见,黎曼几何是“仅次于罗巴切夫斯基几何的另一类非欧几何”。

若想针对阿基米德公理开展类似研究,只需假设该公理不成立,就能得到韦罗内塞(Veronese)与我本人曾研究过的“非阿基米德几何”。

由此引出一个更具普遍性的问题:能否从其他具有启发意义的角度出发,构建出“与欧几里得几何拥有同等合理性的相邻几何”?在此,我想让大家关注一个被许多学者用作直线定义的定理,即“直线是两点间的最短距离”。

这一表述的核心内涵,可简化为欧几里得的“三角形两边之和大于第三边”定理——显而易见,该定理仅涉及“基本概念”(即直接从公理导出的概念),因此更易于进行逻辑分析。

欧几里得在全等定理的基础上,借助外角定理证明了这一命题。但我们不难发现:仅依靠“与线段和角的叠合相关的全等定理”,无法证明欧几里得的这一定理,必须用到“三角形全等定理”(或等价的“等腰三角形底角相等定理”)。

因此,我们不妨设想这样一种几何:它满足普通欧几里得几何的所有公理,尤其满足除“三角形全等定理”(或除“等腰三角形底角相等定理”)外的所有全等公理,同时将“任意三角形中两边之和大于第三边”作为一条特殊公理。

人们会发现,这种几何确实存在——它正是闵可夫斯基在其着作《数的几何》[8]中构建的几何,且被用作他算术研究的基础。因此,闵可夫斯基几何也是“与普通欧几里得几何相邻的几何”,其核心特征可概括为以下两条规定:

1. 与定点o距离相等的点,位于普通欧几里得空间中以o为球心的“凸闭合曲面”上。

2. 若一条线段可通过普通欧几里得空间的“平移”变换变为另一条线段,则称这两条线段相等。

闵可夫斯基几何同样满足平行公理。通过研究“直线是两点间最短距离”这一定理,我构建了另一种几何[9]:它不满足平行公理,但满足闵可夫斯基几何的其他所有公理。

“直线是两点间最短距离”这一定理,以及与之等价的“欧几里得三角形边的关系定理”,不仅在数论中意义重大,在曲面理论与变分法中也发挥着重要作用。正因如此,也因为我相信“深入研究该定理的成立条件”能为“距离概念”及其他基本概念(如平面概念、通过直线概念定义平面的可能性)带来新的启发,所以我认为,构建并系统研究这类几何是极具价值的。

[8] 莱比锡,1896年(指闵可夫斯基《数的几何》一书的出版信息)。

[9] 参见《数学年刊》第46卷,第91页。

5. 不假定定义群的函数具有可微性的李变换连续群概念

众所周知,李(Lie)借助“变换连续群”的概念构建了一套几何公理体系,并从群论的角度证明了这套公理足以支撑几何学。但李在其理论的基础部分就假定:定义群的函数具有可微性。这就留下了一个疑问:在李的理论框架中,“可微性假设”与“几何公理问题”相关联,这种关联是否真的不可避免?还是说,可微性其实是“群概念”与“其他几何公理”的推论,而非必需的前提?

这一思考,连同与算术公理相关的其他问题,共同引出了一个更具普遍性的问题:在不假定“定义群的函数具有可微性”的前提下,我们对李的“变换连续群”概念的研究能推进到何种程度?

李将“有限变换连续群”定义为这样一套变换体系:

x_i = f_i(x_1, x_2, \\dots, x_n; a_1, a_2, \\dots, a_r) \\quad (i=1,2,\\dots,n)

其核心性质是:任取体系中的两个变换(例如)

x_i = f_i(x; a) \\quad \\text{与} \\quad x_i = f_i(x b)

将它们先后作用(即复合),得到的新变换仍属于该体系,因此可表示为

x_i = f_i(x; \\phi_1(a,b), \\phi_2(a,b), \\dots, \\phi_r(a,b))

其中\\phi_1, \\phi_2, \\dots, \\phi_r是关于参数a与b的确定函数。

由此可见,“群的性质”完全体现在一组函数方程中,本身并未对定义群的函数f_i附加其他限制。但李在后续处理这些函数方程(即推导着名的“基础微分方程”)时,却必然假定了“定义群的函数具有连续性与可微性”。

墨坛书屋推荐阅读:末世重生:我觉醒了双系统?最豪赘婿陆枫纪雪雨我在古代逃荒路上如鱼得水万界独尊玄天战尊傲气凌神教授家的小姑娘恶毒女配不按剧情走阴神司探登高者寡六零:老太搞事业,养崽崽日常相公失忆后,医妃带空间养崽穿书女配和未婚夫恋爱的甜甜日常官道之1976军阀:从县长开始征伐天下星际毛绒绒陆沉周若雪无删减完整版拜师九叔之我在民国当军阀小公爷,夫人带前世记忆重生救府末世金丝雀到年代文的摆烂人生带雨梨花祁同学,真的不继续追了吗重生四岁小玄师,别怪我无情以大针蜂开局的异世界宝可梦之漫威:搞笑角色摆烂日常超神:我真不想成神!快穿:我修仙回来了,渣渣速退恃娇宠宫廷双姝:权谋与情丝剑道初心女尊:当白切黑皇女遇上土匪郎君庶女发癫日常肖靖堂升职记窝囊女婿三年被瞧不起岳风柳萱崩坏:终末之诗变成动物后才知道摆烂有多香暗恋,你是我的遥不可及远古时代的悠闲生活叫你当炮灰,你转身毒翻全场?和死对头影帝穿越古代逃荒赢麻了斩神:转生黄泉,践行虚无之路!玄学大佬驾到,万千恶鬼瑟瑟发抖恶毒女配一心求死原神获得造物主系统的诸天之旅陶园田居,悠闲的山村生活修真需要高科技摸金校尉:大赦天下别人啃老我啃小,我的儿子是大佬国运:失忆的我要扮演张麒麟玩止水
墨坛书屋搜藏榜:萌宝被抛弃后:被全国兵哥哥宠哭养猪小能手穿七零首长见面要毁婚?后来被钓成翘嘴盗墓:开局探索金国大将军墓甜!漂亮军嫂海岛寻夫后被宠上天绝世邪神图书馆转角遇到你奥特:黑暗洛普斯的奇妙冒险!我作业没写你要我穿越世界消刀?雷符当纸抽用,我还怕你红白撞煞吗?穿来就撩佛子:破戒从吻开始离婚当夜,被豪门继承人搂着亲王妃强势回归,被休摄政王追妻忙救命,霍爷的小傻妻野又撩我的老领导是李云龙天地道君要回家神豪系统之打造奢华娱乐帝国尸兄:从葫芦娃到尸皇仙子毋燥,我拚老命也要解你情毒在团内当团宠的一天我以前好像很厉害龙族:开局拐走夏弥自创超凡体系你好!亲爱的小狼!从开始的左道生涯[综]万界旅行社医妃入怀,王爷你就宠她吧八零偏执大佬的娇软白月光新时代的女奥特2被甩后,嫁给了他死对头蜡笔小新:我的校园青春仙路漫漫吾终将问鼎!悍姐好种田替嫁残疾大佬后他站起来了崩坏:带着女武神写二创盗墓同人之换个姿势穿小哥女主重生后,每天都想锤人正阳门下:东南亚之主魔道少主的我,功德成圣了靖康物语之塞北帝姬泪那夜后,糙汉霍总跪哄孕吐小甜妻春日云烟直男穿进ABO靠装A升级美貌呆萌女撩了臭屁腹黑影帝神起在风华我与你不止于此鬼灭:琉璃化雪安陵容重生之我一胎俩宝了大秦:开局炼制百万傀儡阴兵极品废柴召唤师萌娃分配主神
墨坛书屋最新小说:一人之下,三一小师叔下放被烧死的资本家大小姐重生了JOJO:从拯救徐伦开始渣爹不给的,我那情劫对象给了善念觉醒:我的功德系统崩铁:星穹诡道真千金她爆红了快穿:恶毒女配也要做好人吗?假面骑士,听我说我真的是人类!拖油瓶她才是真团宠修真第一恶霸躺平也能当神医斩神:开局无量空处,我吊打外神去你丫的炮灰!劳资天生就是主角神印:都要当月魔神了,嚣张亿点我在诸天只想规律作息风起青萍,蜜糖正甜谁没当过几天神经病一品凡仙粤海诡影:禁忌迷局道御诸天:李青牛重生忍界,苟命求生绿萍重生,断腿的人变成了楚濂!平凡苟活星尘里的糖薛定谔的开挂数码宝贝:数码反派二战,跟着科涅夫混成了将军他从灰烬中归来原神:当战损帝君穿越请仙典仪女尊:裴公子的演技太过精湛穿来就撩佛子:破戒从吻开始九幽宅邸录崩铁:从翁法罗斯开始成为星神少将军,今日份暗杀请查收顶流穿成炮灰,狂撩残疾反派老公穿成狐妖后,我缠上了赶考书生他的世界有光了霍格沃兹魔法使奥特:诡异入侵?我反手光暗同源星际种田:战神今天又来蹭饭了我的契约蛇君是傲娇龙恶毒男配竟是病娇男主的顶A老婆万人嫌男配只是在假装深情逆流寻她为师尊解毒后,我的修为开始暴涨商先生,新婚请节制!六零娇宠:科研大佬与她的冷面兵宝可梦:我真的有钞能力捡来的妖君