墨坛书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

9. 任意数域中最一般互反律的证明

对于任意数域,需证明次幂剩余的互反律,其中表示奇素数;此外,还需证明当为的幂次或奇素数的幂次时的互反律。

我相信,通过对我所发展的次单位根域理论[23]以及我的相对二次域理论[24]进行适当推广,即可得到该互反律本身,以及证明该互反律所必需的方法。

[23]《德国数学会年度报告》,《论代数数域理论》(Ueber die theorie der algebraischen Zahlk?rper),第4卷(1897年),第五部分。

[24]《数学年刊》,第51卷;以及《哥廷根皇家科学协会通讯》,1898年。

10. 丢番图方程可解性的判定

给定一个丢番图方程,该方程包含任意多个未知数,且系数为有理整数:设计一种方法,通过有限次运算,判定该方程是否存在有理整数解。

11. 具有任意代数数值系数的二次型

当前我们对二次数域理论[25]的认知,使我们能够成功研究包含任意多个变量、且系数为任意代数数值的二次型理论。这尤其引出一个有趣的问题:对于给定的、系数为代数数值且包含任意多个变量的二次方程,求其在由系数确定的有理代数域中的整数解或分数解。

下述重要问题可作为连接代数与函数论的桥梁:

[25]希尔伯特(hilbert),《论狄利克雷双二次数域》(Ueber den dirichletschen biquadratischen Zahlenk?rper),《数学年刊》,第45卷;《论相对二次数域理论》(Ueber die theorie der relativquadratischen Zahlenk?rper),《德国数学会年度报告》,1897年,以及《数学年刊》,第51卷;《论相对阿贝尔域理论》(Ueber die theorie der relativ-Abelschen K?rper),《哥廷根皇家科学协会通讯》,1898年;《几何基础》(Grundlagen der Geometrie),莱比锡,1899年,第八章,第83节[汤森德(townsend)英译版,芝加哥,1902年]。另可参见G.吕克尔(G. Ruckle)的博士论文,哥廷根,1901年。

12. 将克罗内克阿贝尔域定理推广至任意有理代数域

每个阿贝尔数域都可由有理数域通过单位根域的合成得到,这一定理归功于克罗内克(Kronecker)。这一积分方程理论中的基本定理包含两部分内容,具体如下:

第一部分:回答了关于方程的数量与存在性问题——即存在多少个、是否存在这样的方程:它们具有给定的次数、给定的阿贝尔群,且相对于有理数域具有给定的判别式。

第二部分:指出这类方程的根构成一个代数数域,该数域与将指数函数的自变量依次取所有有理数值时所得到的数域一致。

第一部分内容涉及通过代数数的群与分歧性来确定某些代数数的问题。因此,这一问题与“根据给定黎曼曲面确定对应代数函数”这一已知问题相对应。第二部分内容则通过超越方法(即借助指数函数)给出了所需的代数数。

由于虚二次数域是除有理数域外最简单的数域,因此产生了将克罗内克定理推广到这一情形的问题。克罗内克本人曾断言,二次域中的阿贝尔方程可由具有特殊模的椭圆函数变换方程给出,由此,椭圆函数在此处扮演的角色,与前文情形中指数函数所扮演的角色相同。目前尚未有人给出克罗内克这一猜想的证明;但我相信,基于h.韦伯(h. weber)借助我所建立的类域纯算术定理发展而来的复乘法理论[26],要证明这一猜想不会遇到太大困难。

最后,将克罗内克定理推广到如下情形,在我看来具有至关重要的意义:不再以有理数域或虚二次数域为基础,而是以任意代数域作为有理域。我认为,这一问题是数论与函数论中最深刻、影响最深远的问题之一。

从多个角度来看,这一问题都是可研究的。在我看来,解决该问题算术部分的最重要关键,是任意给定数域中次幂剩余的一般互反律。

至于该问题的函数论部分,研究者在这一极具吸引力的领域开展工作时,可借助单变量代数函数理论与代数数理论之间显着的类比关系。亨塞尔(hensel)[27]提出并研究了代数数理论中与“代数函数幂级数展开”相对应的类比问题;兰茨贝格(Landsberg)[28]则探讨了与“黎曼-罗赫定理”相对应的类比问题。黎曼曲面的亏格与数域类数之间的类比关系也十分明显。仅以最简单的情况为例:一方面考虑亏格为(原文未明确写出具体亏格符号,此处按上下文保留“亏格为”后的留白)的黎曼曲面,另一方面考虑类数为(原文未明确写出具体类数符号,此处按上下文保留“类数为”后的留白)的数域。“证明黎曼曲面上存在处处有限的积分”这一问题,对应着“证明数域中存在整数(原文未明确写出具体整数符号,此处按上下文保留“整数”表述),使得数(原文未明确写出具体数的符号,此处按上下文保留“数”表述)生成一个相对于基域无分歧的二次域”这一问题。在代数函数理论中,众所周知,边值问题(Randwerthaufgabe)的方法可用于证明黎曼存在定理。而在数域理论中,证明上述整数(原文未明确写出具体整数符号,此处按上下文保留“整数”表述)的存在性,同样是难度最大的问题。要完成这一证明,必须借助“数域中总存在与给定剩余性质相对应的素理想”这一定理的支撑。因此,后一事实正是数论中与“边值问题”相对应的类比对象。

众所周知,代数函数理论中的阿贝尔定理方程,给出了“黎曼曲面上的给定点数是该曲面上某一代数函数的零点”这一结论的充要条件。在类数为(原文未明确写出具体类数符号,此处按上下文保留“类数为”后的留白)的数域理论中,与阿贝尔定理完全对应的,是二次互反律方程[29](原文未明确写出具体方程,此处按上下文保留“二次互反律方程”表述)。该方程表明:理想(原文未明确写出具体理想符号,此处按上下文保留“理想”表述)是数域的主理想,当且仅当数(原文未明确写出具体数的符号,此处按上下文保留“数”表述)关于理想(原文未明确写出具体理想符号,此处按上下文保留“理想”表述)的二次剩余为正。

由此可见,在刚才概述的问题中,数学的三个基础分支——数论、代数与函数论——实现了最紧密的联系。我确信,尤其是多变量解析函数理论,若有人能成功找到并研究这样一类函数(这类函数对任意代数数域所起的作用,相当于指数函数对有理数域、椭圆模函数对虚二次数域所起的作用),其内容必将得到显着丰富。

接下来转向代数领域,我将提及一个来自方程理论的问题,以及一个由代数不变量理论引出的问题。

[26]《椭圆函数与代数数》(Elliptische Funktionen und algebraische Zahlen),布伦瑞克,1891年。

[27]《德国数学会年度报告》,第6卷;以及即将发表于《数学年刊》的一篇文章[第55卷,第301页]:《论代数数的幂级数展开》(Ueber die Entwickelung der algebraischen Zahlen in potenzreihen)。

[28]《数学年刊》,第50卷(1898年)。

[29]参见希尔伯特(hilbert):《论相对阿贝尔数域理论》(Ueber die theorie der relativ-Abelschen Zahlk?rper),《哥廷根通讯》(G?tt. Nachrichten),1898年。

13. 能否借助仅含两个自变量的函数求解一般七次方程

列线图解法(Nomography)[30]研究的问题是:通过绘制依赖于任意参数的曲线族来求解方程。显然,系数仅依赖于两个参数的方程的每个根(即每个二元函数),都可依据列线图解法的基本原理,以多种方式表示出来。此外,有一大类含三个或更多变量的函数,显然无需借助可变元素,仅通过这一原理就能表示——即所有可通过以下方式生成的函数:先构造一个二元函数,再将该函数的两个自变量分别设为二元函数,接着再将这些新的自变量依次替换为二元函数,如此循环下去,且允许进行任意有限次的二元函数嵌套。例如,任意多个自变量的有理函数都属于这类可通过列线图表构造的函数;因为有理函数可通过加、减、乘、除运算生成,而每种运算都仅产生二元函数。不难看出,在有理数域中可通过根式求解的所有方程的根,也属于这类函数;因为此处除了四种算术运算外,仅需增加开方运算,而开方运算本质上是一元函数。同理,一般的五次和六次方程也可通过合适的列线图表求解;因为借助仅需开方运算的契尔恩豪森变换(tschirnhausen transformations),可将这些方程化为系数仅依赖于两个参数的形式[第26页]。

然而,一般七次方程的根作为其系数的函数,很可能不属于这类可通过列线法构造的函数,即无法通过有限次二元函数嵌套来构造。要证明这一点,需先证明:七次方程(原文未明确写出具体方程,此处按上下文保留“七次方程”表述)无法借助任何仅含两个自变量的连续函数求解。容我补充说明,我已通过严格的方法证实:存在含三个自变量(原文未明确写出具体自变量符号,此处按上下文保留“三个自变量”表述)的解析函数,无法通过有限次二元函数嵌套得到。

不过,通过引入辅助可动元素,列线图解法能够构造含两个以上自变量的函数。近期,多卡涅(docagne)已在一般七次方程的求解中证明了这一点[31]。

[30]多卡涅(docagne),《列线图解法教程》(traité de Nomographie),巴黎,1899年。

[31]《论七次方程的列线图解法求解》(Sur la resolution nomographiqne de léquation du septième degré),《法国科学院院报》(ptes rendus),巴黎,1900年。

14. 某些完备函数系的有限性证明

在代数不变量理论中,我认为“型的完备系是否有限”这一问题值得特别关注。近期,L.毛雷尔(L. maurer)[32]成功将我与p.哥尔丹(p. Gordan)在不变量理论中证明的有限性定理进行了推广——不再以一般射影群为基础定义不变量,而是将任意子群作为不变量定义的基础。

A.胡尔维茨(A. hurwitz)[33]已在这一方向上迈出了重要一步。他通过巧妙的方法,成功对“任意基型的正交不变量系具有有限性”这一结论进行了完全一般性的证明。

墨坛书屋推荐阅读:末世重生:我觉醒了双系统?最豪赘婿陆枫纪雪雨我在古代逃荒路上如鱼得水万界独尊玄天战尊傲气凌神教授家的小姑娘恶毒女配不按剧情走阴神司探登高者寡六零:老太搞事业,养崽崽日常相公失忆后,医妃带空间养崽穿书女配和未婚夫恋爱的甜甜日常官道之1976军阀:从县长开始征伐天下星际毛绒绒陆沉周若雪无删减完整版拜师九叔之我在民国当军阀小公爷,夫人带前世记忆重生救府末世金丝雀到年代文的摆烂人生带雨梨花祁同学,真的不继续追了吗重生四岁小玄师,别怪我无情以大针蜂开局的异世界宝可梦之漫威:搞笑角色摆烂日常超神:我真不想成神!快穿:我修仙回来了,渣渣速退恃娇宠宫廷双姝:权谋与情丝剑道初心女尊:当白切黑皇女遇上土匪郎君庶女发癫日常肖靖堂升职记窝囊女婿三年被瞧不起岳风柳萱崩坏:终末之诗变成动物后才知道摆烂有多香暗恋,你是我的遥不可及远古时代的悠闲生活叫你当炮灰,你转身毒翻全场?和死对头影帝穿越古代逃荒赢麻了斩神:转生黄泉,践行虚无之路!玄学大佬驾到,万千恶鬼瑟瑟发抖恶毒女配一心求死原神获得造物主系统的诸天之旅陶园田居,悠闲的山村生活修真需要高科技摸金校尉:大赦天下别人啃老我啃小,我的儿子是大佬国运:失忆的我要扮演张麒麟玩止水
墨坛书屋搜藏榜:萌宝被抛弃后:被全国兵哥哥宠哭养猪小能手穿七零首长见面要毁婚?后来被钓成翘嘴盗墓:开局探索金国大将军墓甜!漂亮军嫂海岛寻夫后被宠上天绝世邪神图书馆转角遇到你奥特:黑暗洛普斯的奇妙冒险!我作业没写你要我穿越世界消刀?雷符当纸抽用,我还怕你红白撞煞吗?穿来就撩佛子:破戒从吻开始离婚当夜,被豪门继承人搂着亲王妃强势回归,被休摄政王追妻忙救命,霍爷的小傻妻野又撩我的老领导是李云龙天地道君要回家神豪系统之打造奢华娱乐帝国尸兄:从葫芦娃到尸皇仙子毋燥,我拚老命也要解你情毒在团内当团宠的一天我以前好像很厉害龙族:开局拐走夏弥自创超凡体系你好!亲爱的小狼!从开始的左道生涯[综]万界旅行社医妃入怀,王爷你就宠她吧八零偏执大佬的娇软白月光新时代的女奥特2被甩后,嫁给了他死对头蜡笔小新:我的校园青春仙路漫漫吾终将问鼎!悍姐好种田替嫁残疾大佬后他站起来了崩坏:带着女武神写二创盗墓同人之换个姿势穿小哥女主重生后,每天都想锤人正阳门下:东南亚之主魔道少主的我,功德成圣了靖康物语之塞北帝姬泪那夜后,糙汉霍总跪哄孕吐小甜妻春日云烟直男穿进ABO靠装A升级美貌呆萌女撩了臭屁腹黑影帝神起在风华我与你不止于此鬼灭:琉璃化雪安陵容重生之我一胎俩宝了大秦:开局炼制百万傀儡阴兵极品废柴召唤师萌娃分配主神
墨坛书屋最新小说:九洲仙界之再见昆仑说书人,你功法太邪门了龙珠赛亚至尊少白:天幕,我?白月光!综武:说书就变强,开局盘点剑仙终极宇宙:从铁时空奶团开始洪荒妲己都市商战女王重生之暗潮柯南:开局身份驻日华军超神:逢魔时王,审判诸神神医赘婿是满级大佬浮梦催眠师总裁的指尖星光:直播情缘异能力让我在立海大当琴酒小弟柯学猫塑,但全是警察工地最强建筑风水师我的历史视频,让古人破大防恐怖诡异短篇故事五朵金花,朵朵要高嫁无限末日之苍蓝计划她把禽兽养父送进监狱后无敌剑骨炮灰联姻老男人被我种的菜馋哭了末世大佬在古代开农家乐规则之眼:我窥破影城真相一念之善,一念之魔摄政王放下朝堂跟我去种田诸天起源之开局火影古代咸鱼躺赢了长寿的真相邓绥轶事录被妹妹坑成顶流之后予你乐安一人之下,三一小师叔下放被烧死的资本家大小姐重生了JOJO:从拯救徐伦开始渣爹不给的,我那情劫对象给了善念觉醒:我的功德系统崩铁:星穹诡道真千金她爆红了快穿:恶毒女配也要做好人吗?假面骑士,听我说我真的是人类!拖油瓶她才是真团宠修真第一恶霸躺平也能当神医斩神:开局无量空处,我吊打外神去你丫的炮灰!劳资天生就是主角神印:都要当月魔神了,嚣张亿点我在诸天只想规律作息风起青萍,蜜糖正甜