墨坛书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

这番话从任何的学子的口中说出来,都多少有些不知好歹。

但这可是叶秋!

当他沉稳的话语配上一张清俊的脸庞,任何人都不会怀疑说这些话的真实性。

康德和拉波波特二人对视一眼,谁都没有说话,最后长长的叹了一口气,无不惋惜。

两个数学大拿心中很清楚,叶秋以后的前途不可限量,要是能够拜到他们的门下,那将会是一件天大的好事情。

但是活到了他们这种岁数,对于得失看得很开的,不想要拜师了,他们也不再强求。

陆晚晚和靳可竹、安娜三个女生在大礼堂里面呆着无趣,相约去逛街。

整个大礼堂里面就只剩下康德、叶秋、拉波波特、舒尔茨四个人。

四个人围在了桌子的旁边,有时候会聊着自己生活中遇到的琐事,有时候会聊着在数学中碰到等难题。

虽然叶秋和拉波波特、舒尔茨都是第一次见面,但是数学为他们搭建了一道十分美好的桥梁,让他们一见如故。

话语正酣,舒尔茨适时的提出来了一个问题。

“两位老师有一个问题,困惑了我很长时间了,叶秋兄弟你也帮忙参考一下。”

三个人齐刷刷的看向舒尔茨。

舒尔茨咳嗽了一声,便缓缓说道。

“最近我正在研究群论产生的历史,群论产生的历史之中有两个相对一样的置换群,但是是否能够出现一个n与n的质数相同,而后把置换群相互隔离?”

这个问题很是高深。

如果不懂得数学研究的人根本就不知道这个话到底在说什么。

叶秋听闻此言,闭上眼睛深深的陷入了沉思。

要弄明白舒尔茨的这个问题到底是什么意思,首先必须得明白群论产生的历史。

群论是法国数学家伽罗瓦的发明。

他用该理论,具体来说是伽罗瓦群解决了五次方程问题。

在此之前柯西阿贝尔等人也对群论作出了贡献,但是贡献有限,不能支撑后来的研究

最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由j-l.拉格朗日、p.鲁菲尼、n.h.阿贝尔和e.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。

某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群。

1832年伽罗瓦证明了一元n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”,由于一般的一元n次方程的伽罗瓦群是n个文字的对称群sn,而当n≥5时sn不是可解群,所以一般的五次以上一元方程不能用根式求解。

伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,a-l.柯西早在1815年就发表了有关置换群的第一篇论文,并在此后的二十年间对置换群又做了很多工作。

至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在c.若尔当的名着“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。

在数论中,拉格朗日和c.f.高斯研究过由具有同一判别式d的二次型类,即f=ax^22bxycy^2,其中a、b、c为整数,x、y取整数值,且d=b^2-ac为固定值,对于两个型的"复合"乘法,构成一个交换群。

w.r.戴德金于1858年和l.克罗内克于1870年在其代数数论的研究中也引进了有限交换群。

以至有限群群论产生的历史是一个比较高深的数学问题。

数学家关心的是各元素间的运算关系,也即群的结构,而不管一个群的元素的具体含义是什么。举一个具体的例子,根据凯莱定理,任何一个群都同构于由群的元素组成的置换群。

于是,特别是对研究有限群来说,研究置换群就是一个重要的问题了。

如果能够彻底的解而开群论之间的运算关系,那么就可以把物理学和力学相结合起来。

通俗点来讲,如果真的能够解开了群论的历史影响,那么可以把力学和热量学相互转换。

就比如。

当一艘火箭发射在太空之中,本来又经历几万光年的时间才会抵达,抵达另外一颗星球。

但是只要进行力的互换,可能一秒钟或是一分钟就能够抵达下一个星球。

这是对人类利益是产生的一个极大的影响,如果真的能够不彻底的破解开立群论的历史问题,那么将是人类科技进步的一大步。

而这也就是目前舒尔茨所研究的问题。

叶秋咳嗽了一声,缓缓的说出自己的见解。

“要研究群论产生的历史影响,其实最关键的就是要懂得各个群论之间的相互力量转换,就比如a群论和b群论之间是否可以进行转换,但是转换的特定因素是什么?”

“此特定因素又可否在c群论和d群论之间转换?我化了一个特定的关系,是在此特定的关系是中a群论和b群论可以相互进行转换……”

不愧是天才,两个人聊天的时候毫无压力。

话没有说清楚,就能够明白对方的心意,舒尔茨直接把自己的转换故事写在了草稿纸上面,递给叶秋。

叶秋看着面前的转换公式长呼一口气。

这个这个转换公式十分复杂,他跳过了人们原有的逻辑,而是从一种杂乱无计的无章的逻辑入手。

叶秋不由得发出疑问。

“这个转换的公式并没有任何的逻辑,为什么可以成为a群论和b群论之间的支撑呢?”

“正是因为这个公式是杂毫无逻辑,所以才可以成为转换,从某种意义上来讲a群论和b群论之间本来就没有任何的关系和意义,我们如果非要找出一个特定的逻辑公式的话是找不出来的,还不如根据两个群论的特性找出一个杂乱无章的公式呢。”

舒尔茨本来就只是在发表自己的看法,可是这句话却给了自己极大的启发呢。

这样的公式转换是不是也可以运用在np完全问题中呢?

墨坛书屋推荐阅读:光灵行传宠妻入骨:神秘老公有点坏医武兵王陆轩重生空间之少将仙妻不是戏神穿成反派BOSS的小娇妻农女致富记走出深渊,我即是深渊都市小保安战神医婿江辰唐楚楚全集免费阅读下载弃女重生:神医太子妃乾坤剑神红包游戏:我提现了商业帝国医术助我拿下狂傲夫君不死武皇一世倾城直播:在线放牧,我有万亩草原高端食材供应商美食:随机摆摊,顾客疯狂抢购重生80年代好日子岳风柳萱免费阅读大结局化身系统,宿主莫慌,我来了!炼狱孤行者高武:开局修改锻体法震惊世界我演化的物种,都叫我创世神道士不好惹(又名:古井观传奇)慕林灰雾灭世,我是行走吸尘器糟糕!假死脱身后被女主逮住了奉旨抢亲,纨绔太子喜当娘末世玄学大佬在年代文躺赢斗罗之诸天降临游戏降临:龙国预知一切吓哭全球蚀骨缠绵:痴情阔少强宠妻老衲要还俗穿回现代直播他们羡慕哭了我有一个神奇的异能林辰苏夕然小说重生九零俏军嫂猛男诞生记罗军丁涵《上门龙婿》叶辰萧初然桃源灵霄仙尊叛逆少年的沉沦与觉醒农民修神传亿万婚宠:大牌娇妻很撩人人生四部曲最新款第一符师:轻狂太子妃超级吞噬系统坐等男神来倒追侠客阿飞
墨坛书屋搜藏榜:锦云谋票房女王安哥拉风云2009龙虎香江亲手亲嘴把十八线小明星养成天后诸天猎杀者看到成功率,我被相亲对象绑架了校园绝品医王重生之一路随心隐婚总裁的小祖宗甜哭了婚约对象是七位师姐,我要退婚!神医龙婿绝地大探险第一符师:轻狂太子妃解甲归甜(重生)怀孕后,前任小叔找上门要负责东宫禁宠带着空间当熊猫米豆和他的体验屋超级军工霸主系统绑错,我躺赢成仙田园神豪苟在都市修个仙四合院里的喜剧重生八零之军少的毒妻惊!王妃一脚踹翻了王爷的轮椅天生媒运华娱从仙剑开始曹军打赏女主播,我能无限提升修为我有一个万能系统商城都市:霸道总裁爱上我郡主当道:美男有点多闪婚之秘爱成瘾都市至尊医仙七零,恶毒女配奋斗日常私宠:婚前试爱神临觉醒:我成为异世五条悟森罗大帝最强狂兵山晋江湖,我全家都是黑道系统让我当贤妻良母龙族之从挖卡塞尔墙角开始重启白金时代重生为君我的灵器被妹妹直播抽奖了夫人虐渣要趁早全书反派都宠她爱上秦楼重生八零奶萌包占卜师:基础能力干翻全世界
墨坛书屋最新小说:重生79:狩猎带空间野味堆满天直播打赏:开局拒绝系统山海秘藏古卷迷宗都市修仙传,从大一图书馆开始继承千亿遗产后,我靠预知躺赢全全球觉醒:开局SSS级煌天净炎1950:从棺材仔到港岛大亨归处是长安我家租客是仙尊徒步记录者让你培养技工,你培养出国士无双海王归来,千亿谢礼碾碎背叛科技强军:开局点出战锤动力装甲爆笑:老六德云,刚才被怼哭了!出卖那年夏天:与美女流浪的日子四合院:灵泉水泡茶,娄小娥抢婚御兽,却是山海经重生之垂暮权倾刚上大学,被姐姐的闺蜜钓成翘嘴官途:青云志民国:我有个游戏系统纸人抬棺,百鬼夜行特事科麻了,这人比鬼还邪性冷酷女总裁爱上穷屌丝乡村神医,开局救了隔壁小嫂子我的细胞能修炼刑侦天梯九龙战神:我的枷锁是星辰让你玩坦克,你无限蓝把魔王刮死赌石从打工仔到赌石圈传奇开局鬼界小透明,系统降临我无敌我用污染修长生刚到华娱:系统奖励神级颜值?拥有永恒天舟的我,打爆国运游戏特种兵:系统兵王,安然春风十里娱乐:杨蜜隐婚暗藏惊天秘密猫灵生死簿:今夜开始积德做人凡间修神我一户外博主,怎么都叫我男妈妈本想做个软饭男,结果却带飞全家官途重生:从工商所片管逆袭巅峰穿成穷学生,我用老歌火遍蓝星我都退役了,怎么还那么多事!被雪藏后,白露爱上我抗战:我激活了神级幽灵小队剑啸沧溟:陆远传重生后,我的乡贤之路摊牌了,不舔了,我爹是人族战神真名代码108件神器的暴走日常重回渔村:赶海有提示亿万财富至